A New Variational Approach for Limited Angle Tomography

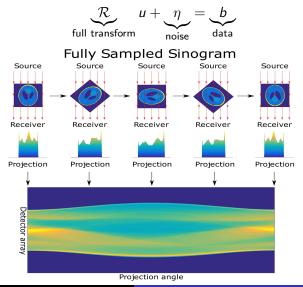
Rob Tovey Mathematics Collaborators: Martin Benning, Carola Schönlieb, Rien Lagerwerf, Christoph Brune Microscopy Collaborators: Rowan Leary, Sean Collins, Paul Midgley

21st March 2019

- Proposed Sparsity Model
- 3 Non-Convex and Non-Differentiable Optimisation
- 4 Numerical Experiments

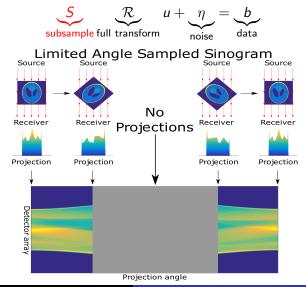
Data Acquisition

X-Ray forward model with noise:

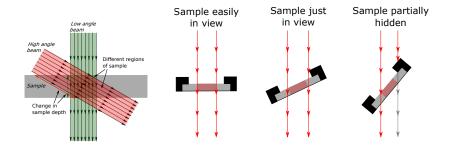


Data Acquisition

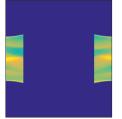
X-Ray forward model with noise:



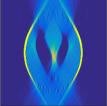
Physical Motivation



Sub-sampled Sinogram



FBP reconstruction

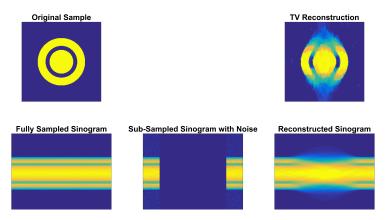


SIRT reconstruction

A Simpler Example

Standard Model: Total Variational Reconstruction

reconstruction =
$$\underset{u}{\operatorname{argmin}} \frac{1}{2} \|S\mathcal{R}u - b\|_{2}^{2} + \lambda \|\nabla u\|_{2,1}$$



Compressed sensing in electron tomography, Leary, Saghi, Midgley, Holland 2013

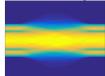
Limited Angle Tomography - Rob Tovey

A Simpler Example

Standard Model: Total Variational Reconstruction reconstruction = $\underset{u}{\operatorname{argmin}} \frac{1}{2} \|S\mathcal{R}u - b\|_{2}^{2} + \lambda \|\nabla u\|_{2,1}$

TV Reconstruction

Reconstructed Sinogram



The solution: global regularisation in data space

Compressed sensing in electron tomography, Leary, Saghi, Midgley, Holland 2013 Limited Angle Tomography - Rob Toyey Problem Motivation

Anisotropic Total Variation

Method from inpainting literature:

reconstruction =
$$\underset{v}{\operatorname{argmin}} \frac{1}{2} \|Sv - b\|_{2}^{2} + \lambda \|A\nabla v\|_{2,1}$$

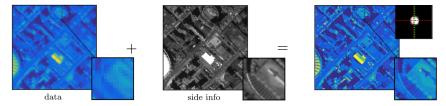


Figure adapted from *Blind image fusion for hyperspectral imaging* with the directional total variation, Bungert, Coomes, Ehrhardt, Rasch, Reisenhofer, Schönlieb 2018

Anisotropic Diffusion in Image Processing, Weickert 1998 A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection, Calatroni, Lanza, Pragliola, Sgallari 2019

Limited Angle Tomography - Rob Tovey

Proposed Sparsity Model

Energy Functional:

$$E(u, v) = \underbrace{\frac{1}{2} \|Sv - b\|_{2}^{2} + \alpha \|A\nabla v\|_{2,1}}_{\text{inpainting problem}} + \underbrace{\frac{1}{2} \|\mathcal{R}u - v\|_{\beta}^{2} + \gamma \|\nabla u\|_{2,1} + \chi_{u \ge 0}}_{0}$$

fully sampled reconstruction

Reconstruction Method:

reconstruction =
$$\underset{u,v}{\operatorname{argmin}} E(u, v)$$

where A is an anisotropic diffusion tensor.

Our Model

Energy Functional:

$$E(u, v) = \underbrace{\frac{1}{2} \|Sv - b\|_{2}^{2} + \alpha \|A(\mathcal{R}u)\nabla v\|_{2,1}}_{\text{inpainting problem}} + \underbrace{\frac{1}{2} \|\mathcal{R}u - v\|_{\beta}^{2} + \gamma \|\nabla u\|_{2,1} + \chi_{u \ge 0}}_{\text{fully sampled reconstruction}}$$

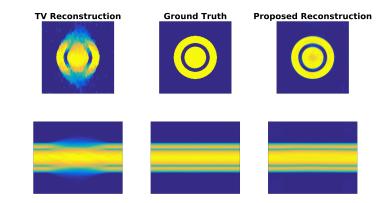
Problem:

$$A = A(\text{reconstruction}) \rightsquigarrow A = A(\mathcal{R}u)$$

Theorem

For suitable choices of hyperparameters, $A \in C^{\infty}$ and E is weakly lower semi-continuous.

Sanity Check



It is a hard non-convex/non-smooth optimization problem but it does add the right sort of information.

Reference	Structure	Complexity	Intepretability
Dong, Li, Shen	Wavelet	Convex	High
2013			
Current talk 2019	Anisotropy	near-Convex	Medium
Bubba, Kutyniok,	Learned	non-convex	Low
et. al. 2018			

X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting, Dong, Li, Shen 2013 Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography, Bubba, Kutyniok, Lassas, März, Samek, Siltanen, Srinivasan 2018

Limited Angle Tomography - Rob Tovey

3 Non-Convex and Non-Differentiable Optimisation

4 Numerical Experiments

$$E(u,v) = f(u,v) + \|A(u)v\|_1$$

where *f* is simple, jointly-convex.

$$E(u,v) = f(u,v) + \|A(u)v\|_1$$

where f is simple, jointly-convex.

• Non-Convex/-Differentiable ~> not optimizable directly

$$E(u, v) = f(u, v) + ||A(u)v||_1$$

where f is simple, jointly-convex.

- Non-Convex/-Differentiable ~→ not optimizable directly

$$E(u, v) = f(u, v) + ||A(u)v||_1$$

where *f* is simple, jointly-convex.

- Non-Convex/-Differentiable ~→ not optimizable directly
- Mantra: simplify \rightarrow penalize \rightarrow optimize \rightarrow repeat...
- Our solution, (bi-)convexify:

$$A(u)v \approx A(u_0)v + \nabla A(u_0)(u-u_0)v$$

is a bilinear.

$$u_{n+1} = \underset{u}{\operatorname{argmin}} f(u, v_n) + \| [A(u_n) + \nabla A(u_n)(u - u_n)] v_n \|_1 \\ + \tau \| u - u_n \|_2^2 \\ v_{n+1} = \underset{v}{\operatorname{argmin}} f(u_{n+1}, v) + \| A(u_{n+1})v \|_1 + \| v - v_n \|_2^2$$

Error bounds, quadratic growth, and linear convergence of proximal methods, Drusvyatskiy and Lewis 2016 Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms, Ochs, Fadili, and Brox 2017

Limited Angle Tomography - Rob Tovey

Theorem

 In general Banach spaces we have a monotone decrease property

$$E(u_{n+1},v_{n+1}) \leq E(u_n,v_n)$$

 $\sum_{n=1}^{N} \|u_{n+1} - u_n\|_2^2 + \|v_{n+1} - v_n\|_2^2 \le E(u_0, v_0) - E(u_{N+1}, v_{N+1})$

In finite dimensions, a subsequence must converge

Any limit point must be critical in u and critical in v

Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Bolte, Sabach, Teboulle 2013 Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms, Ochs, Fadili, Brox 2017

Limited Angle Tomography - Rob Tovey

Proposed Sparsity Model

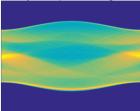
3 Non-Convex and Non-Differentiable Optimisation

4 Numerical Experiments

Shepp-Logan Phantom Example

Original Sample

Fully Sampled Sinogram

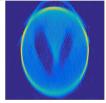


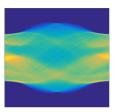
Sub-Sampled Sinogram with Noise

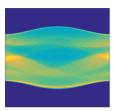
Shepp-Logan Phantom Example

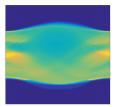
Ground Truth

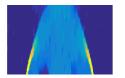
Proposed Reconstruction

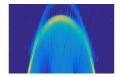


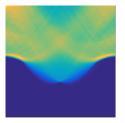


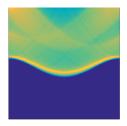


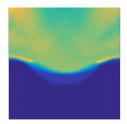


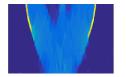


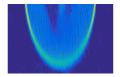


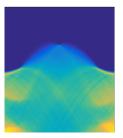


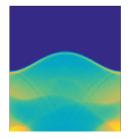


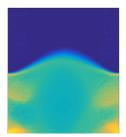




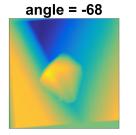


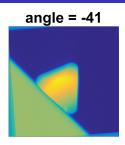


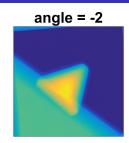


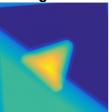


Experimental Example



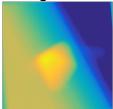






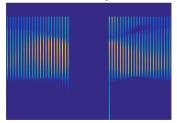
angle = 34

angle = 67



Experimental Example

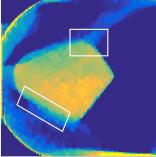
Pre-Processed Data, Full Range



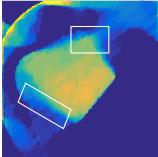
Pre-Processed Data, Limited Range

Limited Angle Tomography - Rob Tovey

TV Reconstruction, Full Data

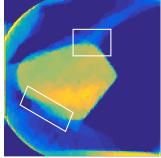


TV Reconstruction, Sub-sampled

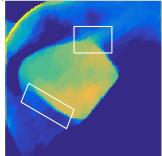


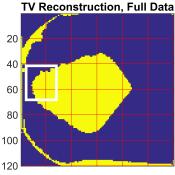
Limited Angle Tomography - Rob Tovey

Proposed Reconstruction, Full Data

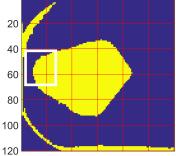


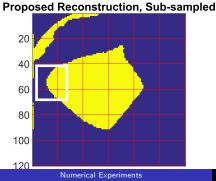
Proposed Reconstruction, Sub-sampled

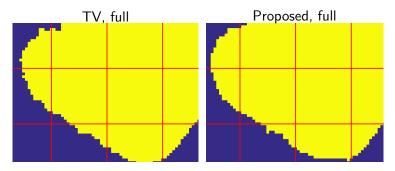


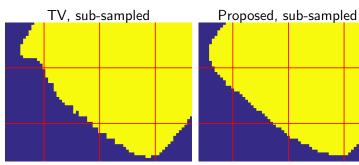


TV Reconstruction, Sub-sampled









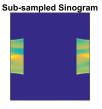
- We have given an example where limited data is unavoidable
- Acknowledging the missing data explicitly allows us to mitigate errors
- Optimising where you are detecting structure on-the-fly is intrinsically hard
- We have given an example of the types of optimization tools available in this case
- A good choice of inpainting prior allows us to recover key geometrical features

Thank you for your attention

For more information:

Directional Sinogram Inpainting for Limited Angle Tomography, T., Benning, Brune, Lagerwerf, Collins, Leary, Midgley, Schönlieb Inverse Problems 2019

Reconstructions from 'bad' Data



SIRT reconstruction

TV reconstruction

Noisy Sinogram

SIRT reconstruction

TV reconstruction

By construction of algorithm:

$$E(u_n, v_n) + \|v_n - v_{n-1}\|_2^2 \le E(u_n, v) + \|v - v_{n-1}\|_2^2 \quad \forall v \quad (*)$$

and equivalently for u.

By construction of algorithm:

$$E(u_n, v_n) + \|v_n - v_{n-1}\|_2^2 \le E(u_n, v) + \|v - v_{n-1}\|_2^2 \quad \forall v \quad (*)$$

and equivalently for *u*. Summability:

$$(*) \implies \|u_n - u_{n-1}\|_2^2 + \|v_n - v_{n-1}\|_2^2 \le E(u_{n-1}, v_{n-1}) - E(u_n, v_n)$$

Sketch Proof of Convergence

By construction of algorithm:

$$E(u_n, v_n) + \|v_n - v_{n-1}\|_2^2 \le E(u_n, v) + \|v - v_{n-1}\|_2^2 \quad \forall v \quad (*)$$

and equivalently for *u*. Summability:

$$(*) \implies \|u_n - u_{n-1}\|_2^2 + \|v_n - v_{n-1}\|_2^2 \le E(u_{n-1}, v_{n-1}) - E(u_n, v_n)$$

Limit points are critical points:

$$(*) \implies E(u_{\infty}, v_{\infty}) \le E(u_{\infty}, v) + \|v - v_{\infty}\|_{2}^{2}$$
$$\implies \frac{E(u_{\infty}, v) - E(u_{\infty}, v_{\infty})}{\|v - v_{\infty}\|} = O(\|v - v_{\infty}\|)$$
$$\implies \partial_{v} E(u_{\infty}, v_{\infty}) = 0$$